RHIC PROJECT

Brookhaven National Laboratory

Effects of Position Errors of the Magnetic Center in Dipoles

G. Parzen

Effects of Position Errors of the Magnetic Center in Dipoles G. Parzen

Because of the systematic b_2 due to magnetization or iron saturation, random position errors in the magnetic center will generate a random b_1 .

The b_2 due to magnetization or saturation in the dipoles is

γ	7	12	100	
b_2'	-10	-3	-6.5	$\times 10^{-4}$

The expected random b_1 in the dipoles is $b_1 = 8.4 \times 10^{-5}$ /cm rms. It is hoped to reduce this b_1 by about a factor of 4 by magnet shuffling. In order to preserve this factor of 4, the random magnetic center error should lead to a random b_1 which is smaller than $b_1 = \frac{1}{4}(8.4 \times 10^{-5})$ or $b_1 = 2.1 \times 10^{-5}$ /cm rms.

A 0.5 mm rms error in the magnetic center will give a random b_1 of $b_1 = 1.46 \times 10^{-5}$ /cm rms.

Assuming a closed orbit error in the dipoles of 0.5 mm rms, then the magnetic center is off the closed orbit by

$$\Delta x = \sqrt{(0.5)^2 + (0.5)^2} = 0.7 \text{ mm/rms},$$

and

$$b_1 = 2\left(\frac{6.5}{6.25}\right) \times 10^{-4} \times 0.07 = 1.46 \times 10^{-5} / \text{cm rms},$$

using the $b_2' = 6.5$ at $\gamma = 100$.

The average b_1 generated, as described above, can be corrected by horizontal positioning of the dipole during installation, as suggested by H. Hahn. A 0.5 mm rms error in the dipole installation may be considered as a possible tolerance.